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A B S T R A C T   

The structure of 9-year time series data for Sea Surface Temperature (SST), Chlorophyll a (Chl-a) and Total 
Suspended Solids (TSS), derived from the Visible Infrared Imaging Radiometer Suite (VIIRS), was examined in 
this study. Authors found that there exists strong seasonality among the three variables with spatial heteroge-
neity along the Korean South Coast (KSC). In specific, SST was in phase with Chl-a, but out of phase with TSS by 
six months. A strong inversed spectral power with six-month phase-lag was found between Chl-a and TSS. This 
could be attributed to different dynamics and environmental settings. For example, Chl-a concentration seemed 
to have strong positive correlation with SST indicating typical seasonality of marine biogeochemical processes 
such as primary production; while a strong negative correlation between TSS and SST might have been influ-
enced by changes in physical oceanographic processes, such as stratification and monsoonal wind-driven vertical 
mixing. In addition, the strong east–west heterogeneity of Chl-a suggests that the marine coastal environments 
are predominantly governed by distinct local hydrological conditions and human activities associated with land 
cover and land use, while the east–west spatial pattern revealed in TSS timeseries was associated with the 
gradient of tidal forcings and topographical changes keeping tidally induced resuspension low eastward.   

1. Introduction 

Coastal and estuarine waters are important habitats of ecologically 
and commercially important marine resources and provide socio- 
economic benefits and values. However, due to increased human ac-
tivities and global climate change, coastal and estuarine systems have 
been facing unprecedented environmental challenges such as deterio-
ration of water quality (WQ) (Anderson et al., 2002; Diaz and Rosen-
berg, 2008; Doney, 2010; Howarth et al., 2011; Rabalais et al., 2002; 
Rosenzweig et al., 2007). As freshwater inflow is the major source of 
nutrients and sediments delivered downstream, altered quantity and 
quality of riverine inputs and its contents are one of environmental 
concerns that can enhance harmful algal blooms, hypoxia downstream. 

Water quality in bays, estuaries and coastal waters also depends on their 
topographical/morphological settings (e.g., depth, size, shape) and/or 
local hydrodynamic conditions (e.g., currents, tidal forcings) from their 
downstream boundaries. Therefore, gaining knowledges on the spatio- 
temporal changes of WQ dynamics at the land–ocean boundaries and 
their implications require holistic approaches across the disciplines, 
such as environmental/marine sciences and socio-economics. 

Although there still exist uncertainties in calibrating signals obtained 
from CASE II waters and in extracting meaningful WQ information, 
remote sensing can provide comprehensive datasets covering much 
larger areal coverage in relatively higher spatio-temporal resolution as 
compared to conventional field monitoring approaches. Recently, much 
attention has been paid to this gap-filling capability and the application 
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of remote sensing techniques becomes more common in monitoring WQ 
indicators (e.g., chlorophyll a [Chl-a]) in coastal and estuarine waters 
(Blondeau-Patissier et al., 2014; Bresciani et al., 2014; Kim et al., 2017, 
2020; Lu et al., 2020; Mouw et al., 2015). Along with temperature, 
major organic/inorganic nutrient species, dissolved oxygen, heavy 
metals, Chl-a and total suspended solids (TSS) are representative stan-
dard WQ indicators commonly found in any conventional in-situ 
monitoring programs. Recently, Chl-a and TSS are getting more atten-
tions as good examples in coastal satellite oceanography as well as 
oceanic remote sensing studies. 

There have been extensive oceanographic studies around bays, es-
tuaries and adjacent waters of the Korean South Coast (KSC). Some of 
them focused on physico-chemical features of the coastal waters (Kim, 
1999; Kim and Rho, 1993, 1994; Kwon and Kang, 2007; Lee et al., 
2018a; Yang, 1994; Yang et al., 1998) and some studies focused their 
efforts more on water quality issues of bays and estuaries, such as 
eutrophication and hypoxia (Cho, 1991; Hong et al., 1991; Kim et al., 
2006, 2015b, Lee et al., 2017, 2018b; Lim et al., 2006). Yet, little or no 
efforts have been made to address spatio-temporal structures of inter-
active dynamics between satellite-derived Chl-a and TSS, and their re-
lationships with SST (sea surface temperature) in larger regional scale 
that covers entire KSC (about 300–400 km in length). The research 
objectives of this paper include: 1) decomposing spatial and temporal 
variability of SST, Chl-a and TSS; 2) finding their relationships in the 
KSC waters; and 3) examining potential climatic implications embedded 
in the long-term timeseries of Chl-a. 

2. Materials and methods 

2.1. Study area 

The Korean South Coast is a typical ria coast where there are several 
parallel rias separated by prominent ridges, forming a few major bays 

with large tidal flats extending a distance inland and numerous islands 
(Fig. 1; Park and Yi, 1995). The morphology of the KSC is a result of sea 
level change that caused the submergence of a river valley through 
geological processes of uplifts and subsidences during the late Holocene 
era (Kong and Park, 2007; Yoo et al., 2020). 

Tides are predominantly semi-diurnal in the study area. Macrotidal 
setting is another characteristic feature in the KSC. The maximum tidal 
range is relatively large in the western KSC (e.g., ~300 cm) and getting 
decreased toward the eastern KSC (e.g., ~100 cm). The KSC, as part of 
the Korea/Tsushima Strait, is under the strong influence of Tsushima 
Warm Currents with the general northeastward flow from the East China 
Sea toward East/Japan Sea (Teague et al., 2002; Lee et al., 2019). The 
hydrographic data analysis results show an increase in the averaged 
salinity from the western Korea Strait toward eastern section due mainly 
to freshwater inputs from the Yangtze River (Hwang et al., 2014; Lee 
et al., 2019). In addition, cold and less saline water represents the tidally 
mixed coastal waters around KSC, which is separated from warm and 
saltier water mass influenced by the main branch of Tsushima Warm 
Current water mass (Lee et al., 2019). 

In accordance with the Article 13 of Marine Conservation Act in 
Korea, the study area is divided into seven sections based primarily on 
the classification of coastal geography, the impact of river input, the 
characteristics of drainage basin, and the level of connectivity to the 
open ocean. Major freshwater input into the study area is from the 
Seomjin and Nakdong Rivers. The Seomjin River drains to the middle of 
the study area, i.e., into the section A4, while the Nakdong River enters 
to the eastern section, A6 (Fig. 1). The mean annual discharge of the 
Seomjin River ranges 58–68 m3/s and it reaches up to 344 m3/s in the 
Nakdong River (Hwang et al., 2017; Seo and Park, 2020). The catchment 
area of the Nakdong River is 23,300 km2 which is about six times larger 
than that of the Seomjin River (4,832 km2; Seo and Park, 2020). 

Fig. 1. Map of Korean South Coast and seven delineated boxes in the present study.  
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2.2. Satellite-derived observations 

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a multi- 
disciplinary instrument on the spacecraft, the Suomi National Polar- 
orbiting Partnership (S-NPP) which was successfully launched in 
October 2011. The mission is to provide continuity with the MODIS 
(Moderate Resolution Imaging Spectroradiometer) instrument and add 
to the moderate-resolution, long-term data record of WQ monitoring in 
estuaries as MODIS nears the end of its mission. 

VIIRS-SNPP Level-2 daily ocean color products such as Chl-a and 
remote sensing reflectance (Rrs) at various wavelengths (Rrs(λ)), and day 
time SST from January 2012 to December 2020 were downloaded from 
the NASA ocean color website (http://oceancolor.gsfc.nasa.gov/) 
maintained by the Ocean Biology Processing Group (OBPG) of NASA 
Goddard Space Flight Center (GSFC) for the southern sea of Korean 
Peninsula (Fig. 1). 

The VIIRS level-2 ocean color data were generated with the NASA 
standard atmospheric correction algorithm (Bailey et al., 2010; Stumpf 
et al., 2003). The VIIRS Chl-a data are derived using the NASA standard 
ocean color Chl-a algorithm (Hu et al., 2012; O’Reilly et al., 2000) and 
the VIIRS SST products are derived using the long-wave infrared (LWIR) 
SST algorithm with MODIS bands at 11 and 12 µm. The LWIR SST al-
gorithm is based on a modified version of the nonlinear SST algorithm 
(Walton et al., 2004; Minnett et al., 2014; Kilpatrick et al., 2015). More 
information can be found at the NASA OBPG website (https://oceancolo 
r.gsfc.nasa.gov/atbd/). Those Level-2 data were resampled to a standard 
Mercator projection with 1 km spatial resolution for the study area. 

A TSS model developed for the Korean coastal waters was adopted 
for this study (Siswanto et al., 2011; Son et al., 2014).  

log(TSS) = 0.649 + 25.623[Rrs(λ2) + Rrs(λ3)] – 0.646[Rrs(λ1)/Rrs(λ2)](1)       

where Rrs(λ) is remote sensing reflectance at various wavelengths λ1 
= 490 nm, λ2 = 555 nm, λ3 = 670 nm. In this paper, the TSS algorithm 
using Rrs(λ) at 3 wavelengths (λ1 = 486 nm, λ2 = 551 nm, λ3 = 670 nm) 
were applied to the daily VIIRS ocean color data to produce TSS maps in 
the study area. Various composite images of the VIIRS-SNPP Chl-a, SST, 
and TSS data were generated using the daily remapped VIIRS to inves-
tigate spatial and temporal distribution of Chl-a, SST, and TSS in the 
vicinities of KSC. The average values of the monthly VIIRS-derived Chl- 
a, SST, and TSS images extracted from the 7 regions (Fig. 1) were used to 
generate the monthly time series. 

2.3. Statistical analyses 

The principal component analysis (PCA) was used to decompose 
VIIRS time series data from the 7 regions and to examine spatio- 
temporal structure of SST, Chl-a and TSS. Principal component anal-
ysis is the same as empirical orthogonal function (EOF) often used when 
extracting spatial structures by decomposing multi-dimensional and 
multivariate data in physical oceanography. Authors applied the PCA to 
a group of 7 time series from the study area and created a new time series 
of scores which has the same length as the original time series, and the 
eigenvectors of covariance matrices (a.k.a., loadings) were also 
computed. The dimension of loadings is the same as that of the spatial 
locations in the data (7 regions in this study). The time series of PC1 (or 
EOF mode 1) in the coherent variation (scores) explained temporal 
pattern and was then filtered removing seasonality to see inter-annual 
variability. The filtered time series of PC1 from each variable (SST, 
Chl-a, TSS) was converted to power spectrum using cross-spectral 
analysis to compute lags between any chosen two time-series (e.g., 
SST vs. Chl-a; SST vs. TSS). The cross-spectral analysis is a statistical 
method to find signs that determine lags between any two time-series 
and how much the two time-series correlated either positively or 
negatively. Cross spectral power gives frequencies of the two time-series 
when converted from time domain to frequency domain, and cross- 

correlation coefficients are the indicator of the lag where the two 
time-series are best aligned. 

Filtered time series of PC1 from SST and Chl-a was also compared 
against a climate index, West Pacific (WP). The WP pattern, a primary 
mode of low-frequency variability over the North Pacific, is one of the 
major teleconnection patterns over the wintertime Northern Hemi-
sphere (Barnston and Livezey, 1987; Wallace and Gutzler, 1981). This 
dominant pattern of low-frequency variability in the winter season may 
cause changes in storm track (Nakamura et al., 1987; Lau 1988; Linkin 
and Nigam 2008; Tanaka et al., 2016) which can cause precipitation 
extremes over the Pacific and North America (Nigam 2003; Linkin and 
Nigam 2008; Yuan et al., 2015). The WP pattern is also associated with 
surface air temperatures over the lower latitudes of the western North 
America, East Asia, and the Far East (Linkin and Nigam, 2008; Takaya 
and Nakamura, 2005a,b; Tanaka et al., 2016) and modulates the East 
Asian Winter Monsoon (EAWM; Takaya and Nakamura 2013; Pak et al., 
2014; Wang and Chen 2014). Monthly WP data were obtained from the 
Climate Prediction Center (CPC) of National Centers for Environmental 
Prediction (NCEP) at National Oceanic and Atmospheric Administration 
(NOAA) (www.cpc.ncep.noaa.gov/data/indices/). 

3. Results and discussion 

3.1. Long-term VIIRS-SNPP climatology (2012–2020) 

Climatology images from January 2012 to December 2020 of VIIRS 
SST, Chl-a, and TSS were produced using the daily remapped VIIRS data 
for the KSC to investigate the average spatial distribution (Fig. 2). The 
long-term climatological pattern of SST exhibits high SST in offshore 
waters which, presumably, might have been influenced by variations in 
the bifurcation of the Kuroshio Current and origin of the Tsushima 
Warm Current (Lie and Cho, 2002; Ichikawa and Beardsley, 2002), 
while SST along the coasts is relatively lower than that of offshore waters 
(Fig. 2a). Nevertheless, the long-term SST mean values are found to have 
not much discrepancies among the 7 regions (Fig. 2d). 

The Chl-a image shows clearly divided spatial distribution between 
offshore and nearshore waters with lower Chl-a in the offshore waters 
and much higher Chl-a along the coasts (Fig. 2b). Additionally, Chl-a 
concentrations are higher in the eastern coastal waters than those in 
the western coastal waters, which is confirmed by the long-term mean 
Chl-a (Fig. 2e). It is noteworthy that high Chl-a concentration in A6 is 
owing to the Jinhae Bay waters known as very highly eutrophic coastal 
waters (Kim et al., 2014a; Lee and Kim, 2008; Lim et al., 2006; Yoon 
et al., 2019). This is mainly due to anthropogenic activities since 1970′s 
(e.g., rapid industrialization/urbanization and intensive aquaculture) 
(Kim et al., 2012a,b; Kwon et al., 2014), which resulted in chronic 
seasonal hypoxia, water quality deterioration, and harmful algal 
blooms. 

The overall pattern of the TSS image is similar to that of Chl-a, higher 
in the nearshore waters and lower in the offshore waters (Fig. 2c). 
However, as opposed to the spatial distribution of the Chl-a, TSS is much 
higher in the western coastal waters than in the eastern waters as seen in 
Fig. 2f. This feature is associated with local resuspensions due to tidal 
forcings and topographical change, i.e., wider continental shelf on the 
western KSC than on the eastern sections. Along the southern coast of 
Korea both tidal range and current decrease from the west to the east 
(Byun and Hart 2022). For example, the M2 tidal amplitude is about 100 
cm on the western waters (A1 region in Fig. 1), while that on the eastern 
side (A7 region in Fig. 1) is about 40 cm. Therefore, tidal resuspension 
would decrease eastward. In addition, in A5 region, there is a channel 
extending southeastward normal to the coast. This sudden change in 
water depth would reduce resuspension drastically to form a boundary 
for high TSS as can be seen from Fig. 2c. This is more distinctive in the 
Jinhae Bay (A6) where TSS is relatively lower, but Chl-a concentration is 
significantly high. It is a semi-enclosed inner bay, and the exchange with 
open ocean is rather limited. Since the 1970 s, the inflow of sewage and 
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wastewater has rapidly increased due to industrial development and 
urbanization, resulting in eutrophication and consequently high Chl-a 
concentration. Fig. 3 illustrates that synoptic distributions of the 
VIIRS-derived climatology for the Chl-a and TSS reveal similar patterns 
to those gridded observation composited from 2012 to 2020. 

3.2. Monthly VIIRS-SNPP climatology and seasonal variations 

Monthly climatological (2012–2020) images of VIIRS SNPP SST, Chl- 
a, and TSS for the KSC waters are presented in Fig. 4. The overall spatial 
distribution of the monthly climatological images is similar to that from 
the climatological images in SST, Chl-a, and TSS. However, there is a 
strong seasonal variation in SST, Chl-a, and TSS images. The monthly 
climatology VIIRS-derived SST images show that SST is lowest in winter 
(January and February) and higher in July to September with the 
highest in August (Fig. 4). Some bays (Deungnyang (A2), Yeoja (A3) and 
Jinhae Bay (A6)) surrounded by islands revealed relatively higher SST 
than nearshore waters during summer months (June through 
September), which is, presumably, due to their semi-enclosed morpho-
logical characteristics and shallow depths that reduce the exchange of 

water mass. As a result, the temperature variations of these inner areas 
are highly correlated with those in air temperature (Park et al., 2017). 

In most of the nearshore coastal areas, Chl-a concentrations are 
relatively high during growing seasons (May through October with 
highest peak in September), whereas Chl-a in the offshore waters is 
higher in spring and autumn (spring and fall blooms) and lower in 
summer and winter, which is a typical seasonal variation of phyto-
plankton in temperate seas. The mid- to late summer Chl-a peak in the 
nearshore waters of KSC including bays and estuaries can be explained 
in several aspects: increased nutrients input carried by increased fresh-
water inflows during episodic storm events or by increased pre-
cipitations during summer Asian monsoon (Jang et al., 2005; Jang et al., 
2010); increased phosphate (PO4

3-) discharges from industrialized and 
urbanized point sources (Kim et al., 2015a; Lee et al., 2001; Lim et al., 
2012); increased ammonium (NH4

+) input from sediment through 
denitrification (Kemp and Boynton, 1992; Kim et al., 2012a,b; Ryther 
et al., 1972); increased phosphate (PO4

3-) from hypoxic sediment via 
desorption of iron-bound phosphorus (Jensen et al., 1995; Jordan et al., 
1991; Conley et al., 2002; Howarth et al., 2011) and extensive aqua-
culture systems (Lee and Kim, 2008). 
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Fig. 2. Distributions of long-term climatology of (a) SST (oC), (b) Chl-a (mg/m− 3(− |-)) and (c) TSS (g/m− 3(− |-)) with mean and standard deviation (error bars) of (d) 
SST (oC), (e) Chl-a (mg m -3) and (f) TSS (g/m− 3(− |-)) at each box. 
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The monthly TSS climatology reveals that higher TSS levels gradu-
ally decreases from coast to offshore, which is similar to the nearshore- 
to-offshore gradient shown in Chl-a. However, as opposed to Chl-a, it is 
found that elevated TSS concentration occurs during the winter months 
(December through March) while TSS levels in summer (July through 
September) remain low (Fig. 4c). This seasonality of TSS is due, in large, 
to changes in the intensity of vertical mixing, which induces the resus-
pension of sediments. The high TSS concentration during winter months 
can be explained by intensified vertical mixing due to stronger 
monsoonal northwesterly wind (Lee et al., 2004; Hwang et al., 2014; 
Kim et al., 2014b; Son et al. 2014). During summer, not only the wind is 
weaker but also the combination of freshwater and strong solar heating 
enhances surface stratification (Park et al., 2021), which reduces the 
vertical mixing and subsequently TSS resuspension. For instance, Bae 
and Kim (2011) calculated the stratification factor based on the total 
flow of tide, wind and density effect and found that the distribution and 
magnitude of the stratification factor were different between the two 
seasons. In addition, it is also noteworthy that the east–west contrast in 
TSS concentrations is striking. The western regions have much higher 
and broader distributions of murky waters than those of eastern regions. 
The seasonal variations are more conspicuous in the western coastal 
waters (A1-A3) than in the eastern coastal waters (A5-A7). The spatial 
and temporal pattern of the two regions were also well described by the 
distribution of stratification (Bae and Kim, 2011). 

3.3. Principal component analysis 

Hovmöller diagrams that represent the temporal evolution of each 
variable clearly reveal the temporal profile of alternating patterns be-
tween positive (yellow) and negative (blue) anomalies (Fig. 5). For SST 
seasonal variability is found to be strong in all 7 regions along the KSC as 
presented in Fig. 5a. Although there is a weak interannual variability 
with 4- to 5-year interval (e.g., see color concentrations of yellow bands 
in Fig. 5a), SST time series is characterized by the intra-annual vari-
ability (i.e. season), presumably, driven by warming-cooling processes 
of the area. For Chl-a seasonality is not as clear as that of SST (Fig. 5b). 
The Hovmöller diagram shows stronger inter-annual variability as 
compared to SST, and for a certain year band not all those 7 regions are 
found to have homogeneous distribution unlike that shown in SST, 
which is the similar case for TSS (Fig. 5c). Temporal evolution of TSS 
anomaly pattern is not homogeneous along the 7 regions of the KSC. 
Some regions have higher concentrations in one season than the other 
regions and vice versa. The patterns of Chl-a and TSS indicate that more 

complex processes might have been involved in their dynamics than 
those governing SST dynamics. 

To decompose the spatio-temporal structure of the time series 
datasets, a principal component analysis (a.k.a., empirical orthogonal 
function; EOF) was applied to the long-term time series of VIIRS-derived 
monthly SST, Chl-a and TSS from 7 regions (Fig. 6). Each data set has 9- 
year long records in monthly intervals from 7 regions (thus, 108 × 7 
dimension) and computed eigenvector and eigen values of covariance 
can explain variability of each time series. After all principal compo-
nents are decomposed into orthogonal positions, variation of each time 
series is illustrated on a biplots (Fig. 6a-c). Each X- (PC1) and Y-axis 
(PC2) represents temporal and spatial structure of the datasets. The 
loadings (eigenvector of the covariance matrix) from the each VIIRS- 
derived SST, Chl-a and TSS for the 7 regions are represented with 
lines, respectively (Fig. 6a-c). Notice that loadings from SST, Chl-a and 
TSS times series are located on the positive axis of PC1, representing 
their temporal structure. This explains that all 7 regions have strong 
seasonal patterns. For instances, the percent of explained SST variances 
in PC1 and PC2 is 99.1% and 0.6%, respectively (Fig. 6d). The percent of 
explained Chl-a variance is 60.4% in PC1 and 15.7% in PC2 (Fig. 6e). 
Similarly, 64.0% of TSS variance can be explained by PC 1 and 19.5% by 
PC2 (Fig. 6f). As seen in Fig. 6, the time component (seasonality) pre-
dominantly explains the structure of SST time series. Although the PC1 
(seasonality) is also a major player determining the structure of Chl-a 
and TSS, spatial component (PC2) is not negligible in contributions to 
the variance of these two variables. Interestingly, loadings from each 
region are clustered into two groups along the PC2 axis for both Chl-a 
and TSS (see red and blue circles in Fig. 5b and 5c). Bays, estuaries 
and coastal waters in the western part of the KSC (A1-A3) are grouped in 
the positive axis of the PC2 for Chl-a and negative axis of the PC2 for TSS 
time series (red circles in Fig. 5b and 5c). On the contrary, the regions 
located on the eastern part of the KSC (A4-A7) are grouped in the 
negative axis of the PC2 for Chl-a and positive axis of the PC2 for TSS 
time series (blue circles in Fig. 5b and 5c). This indicates that both Chl-a 
and TSS have east–west spatial heterogeneity at any given time points 
and the pattern is inversed between the two variables. 

3.4. Cross spectral analysis 

Cross spectral analysis was performed to examine the spectral power 
of individual time series, their correlation, and phase lags (Figs. 7-9). It 
was found that the time series of PC1 in the coherent variation (scores) 
for VIIRS-derived monthly SST and Chl-a were in-phase (Fig. 7a) with 

Fig. 3. Comparisons of mean in-situ climatology (2012–2020) of (a) Chl-a (mg/m− 3(− |-)), (b) TSS (g/m− 3(− |-)) against VIIRS-derived (c) Chl-a (mg/m− 3(− |-)), (d) 
TSS (g/m− 3(− |-)). 
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strong power at the frequency of one year (Fig. 7b) with significant (p <
0.05) coherence within 95% confidence interval (Fig. 7c), which sug-
gests the two time series have strong in-phase seasonal variability 
(positive correlation). The correlation coefficient of the two PC1 time 
series is 57% (Fig. 7d). For VIIRS derived monthly SST and TSS, the two 
variables’ time series of PC1 in the coherent variation (scores) were out- 
of-phase (Fig. 8a) with a strong negative power spectrum at the fre-
quency of one-year (Fig. 8b) with significant (p < 0.05) coherence 
within 95% confidence interval (Fig. 8c). This also suggests the two time 
series showed substantial out-of-phase seasonal variability (negative 
correlation). A 6-month phase-lag between the two PC1 time series was 
found and the correlation coefficient of the shift was 75% (Fig. 8d). The 
two time series of PC1 between the Chl-a and TSS were naturally found 
strong negative (out-of-phase) relationship (Fig. 9). The strong negative 
spectral power was at the frequency of one-year. This negative 

correlation was already presented in PCA structure (Fig. 5). One can 
note that these two groups (east vs. west regions) had an inverse rela-
tionship between the Chl-a and TSS time series. For example, those re-
gions with positive PC2 (upper right quadrant) of Chl-a were located in 
the negative side of PC2 (lower right quadrant) in TSS, and on the 
contrary, those regions with negative PC2 (lower right quadrant) of Chl- 
a were located in the positive side of PC2 (upper right quadrant) in TSS 
(Fig. 6). 

3.5. East-west spatial heterogeneity 

The east–west spatial heterogeneity (Fig. 5b and 5c) between Chl-a 
and TSS in this study was somewhat similar to the north–south spatial 
heterogeneity found between the two variables in the Korean West Coast 
(KWC) previously reported (Kim et al., 2017). In their paper, they 

Fig. 4. Distributions of monthly climatology of (a) SST (oC), (b) Chl-a (mg/m− 3(− |-)) and (c) TSS (g/m− 3(− |-)).  
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summarized that both Chl-a and TSS concentrations were, in general, 
high along the KWC with north–south spatial patterns that can distin-
guish Chl-a departure from TSS images in the KWC (see Fig. 3 in Kim 
et al., 2017). During summer months, Chl-a concentration was found to 
be significantly high in some regions where TSS concentration remained 
relatively low and the opposite for the winter months (low Chl-a and 
high TSS). In the present study, the east–west spatial pattern in the KSC 
was clearly observed by visual inspection (Fig. 4), which is statistically 
confirmed by the principal component analyses with 16–20% of expla-
nation power of the variances by PC2 (spatial component) (Fig. 6e,f). 
These results were comparable to those in KWC (see Fig. 6a and 6b in 
Kim et al., 2017). Despite the algorithmic limitation of CASE I ocean 

color product when applied to CASE II waters, the spatial distribution of 
VIIRS-derived Chl-a in the KSC still gave synoptic information about 
regional trends and patterns over larger areas and longer time periods, 
without necessarily having too much bias due to coastal TSS. 

Then what caused the inversed heterogeneity in both Chl-a and TSS 
timeseries? The spatial variations in TSS can be explained as follows: 1) 
The bifurcation of the Kuroshio Current and complex nature of inter-
acting dynamics of shelf water and Tsushima Warm Current, branched 
from the Kuroshio Current, governed the amount of allochthonous 
sediment delivery to the western regions of the KSC (Fig. 1 in Bi et al., 
2018); 2) Tidal currents-induced resuspension was one of the most 
dominating processes in TSS dynamics of the western regions of the KSC 
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Fig. 5. A Hovmöller diagram showing temporal evolution of 10-year anomalies of (a) SST (oC), (b) Chl-a (mg/m− 3(− |-)) and (c) TSS (g/m− 3(− |-)) in seven boxes 
along the Korean South Coast. 

-1 -0.5 0 0.5 1
Principal Component 1

-1

-0.5

0

0.5

1

Pr
in

ci
pa

lC
om

po
ne

nt
2

A1

A2A3
A4

A5

A6A7
(a)

(d)

1 2 3 4 5 6 7
Principal Components

0

50

100

Va
ria

nc
e

Ex
pl

ai
ne

d
(%

)

-1 -0.5 0 0.5 1
Principal Component 1

-1

-0.5

0

0.5

1
A1

A2A3

A4
A5A6A7

(b)

(e)

1 2 3 4 5 6 7
Principal Components

0

50

100

-1 -0.5 0 0.5 1
Principal Component 1

-1

-0.5

0

0.5

1

A1A2
A3

A4
A5
A6A7

(c)

(f)

1 2 3 4 5 6 7
Principal Components

0

50

100

Fig. 6. Principal component analysis (PCA) of (a) SST (oC), (b) Chl-a (mg/m− 3(− |-)) and (c) TSS (g/m− 3(− |-)) for boxes along the Korean South Coast, which 
demonstrates spatial structures of timeseries of each variable. Bottom panels (d, e, f) present percentage that explains variance for all principal components. It is 
noteworthy that the box A1, A2, A3 (red circle) are located on the opposite quadrant of A4, A5, A6 and A7 (blue circle) along the principal component 2 axis 
indicating the spatial heterogeneity of the two environmental variables (Chl-a and TSS). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

H.-C. Kim et al.                                                                                                                                                                                                                                 



Environment International 178 (2023) 108083

8

(Lee et al., 2013; Son et al., 2014). Kim et al. (2017) reported that 
diurnal (hour-to-hour) variations in TSS assessed with Geostationary 
Ocean Color Imager (GOCI) clearly demonstrated that TSS dynamics in 
Wando Coast (near A1 in this study) was strongly influenced by tidal 
currents, such as tidal asymmetry effect in stratification as discussed in 
Son et al. (2014); 3) The seasonal variations in TSS was, presumably, 
connected with changes in the dominant wind (thus, surface current) 
patterns. The seasonal circulations in the eastern Yellow Sea were 

clockwise in winter and an anti-clockwise circulation in summer (Son 
et al., 2014), respectively. The southward coastal current may bring 
sediment originating from KWC toward western regions of KSC during 
winter months (Bi et al., 2018; Bian et al., 2013). In addition, the sea-
sonality of TSS due to changes in intensity of stratification was more 
pronounced in the western region than eastern KSC (Bae and Kim, 
2011); and 4) Coastal bathymetry between east and west (see the major 
bottom topographical change in A5 region in Fig. 1). Nearshore waters 

Fig. 7. (a) Butterworth filtered PC 1 (EOF mode 1) for 
Chl-a (mg/m− 3(− |-)) and SST (oC), (b) cross spectral 
power between PC 1 for Chl-a (mg/m− 3(− |-)) and SST 
(oC) at given spectral frequency bands, (c) coherence 
showing correlation coefficients for Chl-a (mg/ 
m− 3(− |-)) and SST (oC) at spectral frequency bands, 
(d) cross-correlation function with respect to lags 
explaining phase-shifts. Horizontal grey dashed lines 
represent upper limits of 95% confidence interval. 
Vertical grey dashed line represents phase-shift zero.   

Fig. 8. (a) Butterworth filtered PC 1 (EOF mode 1) for 
TSS (g/m− 3(− |-)) and SST (oC), (b) cross spectral 
power between PC 1 for TSS (g/m− 3(− |-)) and SST 
(oC) at given spectral frequency bands, (c) coherence 
showing correlation coefficients for TSS (g/m− 3(− |-)) 
and SST (oC) at spectral frequency bands, (d) cross- 
correlation function with respect to lags explaining 
phase-shifts. Horizontal grey dashed lines represent 
upper limits of 95% confidence interval. Vertical grey 
dashed line represents phase-shift zero.   
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along the KSC revealed spring phytoplankton blooms in some coastal 
regions or summer blooms in others. The timing and magnitude of the 
bloom climax occurred differently among the regions depending on the 
local environmental settings leading to east–west heterogeneity of Chl-a 
along the KSC. Possible explanations for this are as follows: 1) hydro-
logical conditions, such as watershed size, freshwater inflow quantity, 
man-made damming, local climate conditions and morphological char-
acteristics; 2) the land-cover land-use between the eastern and western 
regions is significantly different; 3) aqua culture systems in the vicinities 
of the coastal regions; and 4) atmospheric/oceanographic conditions, 
such as wind- and tidal forcings, circulation patterns, bottom 
bathymetry. 

3.6. Climate implications 

To investigate a potential linkage between the water quality in-
dicators over the KSC and the WP pattern, cross spectral analysis was 
performed (Figs. S1 and S2). The results between the PC 1 time series for 
SST and the WP index suggest that they are negatively correlated 
(Fig. S1d) with the strongest signal at the frequency of one year 
(Fig. S1b) which exceeds 95% confidence level (Fig. S1c). This result 
indicates that, along the KSC, the positive phase of WP pattern is asso-
ciated with cold SST during winter months, and vice versa for summer 
months. This result is physically consistent with the previous finding 
that the cold advection develops over the Korean Peninsula in the pos-
itive phase of the WP pattern (e.g., Fig. 3 in Tanaka et al., 2016). 
Regarding the cross spectral analysis result using the Chl-a PC1 time 
series (Fig. S2), its relationship with the WP teleconnection turns out to 
be negligible due to the small correlation value (Fig. S2d). This muted 
relationship might be partly caused by the east–west spatial heteroge-
neity of Chl-a over the KSC, which is correlated with the large-scale 
atmospheric circulation. However, it rather suggests that the role of 
atmospheric teleconnection in driving the water quality indicators such 
as Chl-a concentrations is quite limited with the given approach as it 
cannot capture subseasonal timescale of atmospheric circulations (e.g., 
Butterworth filter); the WP-driven patterns are, in general, found in the 
Western-Central North Pacific, where the KSC is located on the western 

boundary of the area; the present study focused on the seasonal cycle of 
phytoplankton dynamics not on seasonal characteristics. Although 
finding causalities between local phenomena and large-scale atmo-
spheric patterns is a challenging task, it still deserves attention as more 
and more studies report climate-driven downscaled effect in the coastal 
marine ecosystems. 

4. Conclusion 

The structure of satellite retrievals of SST and two water quality 
indicators (Chl-a, TSS) in the KSC exhibits strong seasonality among the 
three variables. The PCA results indicate that there exists strong east-
–west heterogeneity in Chl-a and TSS with a clear six-month phase-lag of 
both water quality indicators against SST, implying their inversed sea-
sonal variability. The strong east–west heterogeneity of Chl-a is influ-
enced by local hydrological conditions and human activities. For 
example, the major estuaries and rivers are located on the eastern re-
gions more than the west and this is also true for the urbanized and 
industrialized areas. The east–west heterogeneity of TSS is associated 
with the gradient of tidal forcings and topographical changes along the 
KSC that keep tidally induced resuspension low eastward. The negative 
correlation between Chl-a and TSS found in their cross spectral analysis 
is aliased relationships of Chl-a and TSS against SST, which indicates 
that seasonality of Chl-a in the KSC is determined by typical bottom-up 
biogeochemical processes, and that seasonality of TSS is more driven by 
changes in physical oceanographic processes. For example, during warm 
season more favorable light condition and increased freshwater inflow 
with anthropogenic nutrient loadings likely cause higher Chl-a con-
centration, while weak stratification and stronger vertical mixing during 
winter months increase more chances of TSS resuspension. 
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